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Analysis of weak-anchoring effect in nematic liquid crystals
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A generalized Rapini-Papoular-type anchoring energy forrhil@hys.(Parig Collog. 30, C4-54(1969]
with two coupling constants is established through a second-order spherical-harmonic expansion. Using this
formula, we analyze the threshold and saturation properties of twisted nematic devices with unidirectional
planar anchorage, assuming that the azimuthal and polar anchoring strengths are both finite and distinct from
each other. We also discuss the voltage-controlled-twist effectP. Bryan-Brownet al, Nature (London
392 365(1998]. It is shown that the predicted behavior is consistent with the experimental observations.

PACS numbses): 61.30.Cz, 61.30.Gd

In the last several decades the surface anchoring effect imal[2]. To make it clear, we emphasize here that the equiva-
nematic liquid crystal§NLC) was extensively studield,2].  lence ofi and —1 leads to centrosymmetry @fs:  gg(n)
Many techniques have been invented to build appropriate=gs(—1). This means thagls is a function defined on the
anchoring properties, and many methodologies have been eghole solid angle, although the liquid crystal exists only on
tablished to measure the energies relevant to interfacial a®ne side of the interface. A consequence of the centrosym-
chorage. Unfortunately, the theoretical recognition may notnetry is that any odd-order term disappears spontaneously in
be satisfactory. In the early stage, strong anchoring was usetiSeries expansion s .
to depict the NLC-substrate interfaces, which assumes that With a single easy directio®(6,,¢o) (Fig. 1), g5 be-
the director at the surface is fixed at the easy direction. Howeomes such a function: it is centrosymmetric, and it has two
ever, in most cases the surface coupling is not so strong, aridinima in € and — €. Now we expandys into a series of
hence the concept of weak anchoring has been introducedpherical harmonics with respect to tleasy axisé. The
Rapini and PapoulafRP) built a simple phenomenological second-order result gl 3]
expression for the interfacial energy of homeotropic anchor-
ing per unit ared3]: gs=Asir? ®,, where®d, is the polar 2 1
angle of the director at the surface, and the constaig gs(®,<b)=2 E ImYim(®,®), g _n=0r,. (1
termed anchoring strength or anchoring energy. After that, =0 m=-1
many attempts had been made to generalize the RP energy in
order to describe the planar and tilt anchor[dg-7]. Untii  Here ® and @ are the polar and azimuthal angles with re-
now the situation has been quite perplexing. Beokieal.  spect to€. In Eq. (1), goo is the isotropic part and can be
considered a surface with weak polar and strong azimuthaieglected. Thé=1 terms disappear due to the breaking of
anchoring[5]. Sugimuraet al. used an interfacial energy centrosymmetry. SinceY,o(®,®)=(3 co$0—-1)/2, we
with a single coupling constarj6], but their argument is know that theg,, term just corresponds to the single-
criticized due to the incapability of distinguishing between constant energ}6]
azimuthal and polar coupling. Beigazt al. [7] significantly
improved the RP model, however, their contribution is still cof 0 =(f-é)> 2)
incomplete as a second-order spherical-harmonic m@eel
below); furthermore, their approach fails in applying to the

homeotropic surface with in-plane anisotrd@y, as with the nition that the easy directiod(®=0) is the energy mini-

substrate used in Ref@] and[10]. C S AP >J
In this Rapid Communication, employing a spherical-mgm[m]' This is a significant simplification. 1§2,=gzzr
+i0,,,, theg,, terms become

harmonic expansion, we build a second-order formula of the
anisotropic interfacial energy. It is clear that the energies
used in[3-7] are all special cases of this generalized for- 47
mula. To study its consequences, we apply it to a twisted n ¥ N
nematic slab sandwiched between two unidirectional planar
anchoring surface$l11,12, and to the voltage-controlled-
twist (VCT) effect [9]. For the former, we show that our
study can approach the common case in which the azimuthal
and polar anchoring energies are both finite and distinct from
each other. For the latter, the generalized surface energy X'
properly yields the voltage-dependent twist and saturation
behaviors. FIG. 1. Schematic of anisotropic surface anchoring. Hege
As a function of directionsgs has been developed into a =0, and® (not marked is the angle between plane®©x’ and
series of spherical harmonics with respect to the surface noeOn.

We haveg,;=0, since a nonzerg,; would break the defi-
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920Y 20 ,®) +c.c=4|gy,|sin? O cog(d—V )
—2|gysin* @, ()

whereW o= —arctan{),,; /9,28)/2. In Eq.(3) some constant
factors are neglected in the definition of spherical harmonics.
Merging the second term on the right-hand side of &).
with Eqg. (2), we get the second-order form of the anchoring
energy

05(0,®) =W, sir © co(®—V)
+W,, sir? @ sirk(d - V)

=W,(fi- )24+ W, (ii- 7)2, (4)

where some constants are discardegz(€) is an orthonor-
mal vector triplet (Fig. 1), with Euler angles &q,w/2
—6y,V) rotating from the elementary triplek(y,2). Here

W, andW,, are both positive, sincé is the easy axis. Equa-
tion (4) implies the presence of surface-induced nematic bi-
axiality, in that the deviation of directaii away from the
easy axise in the (E,E) plane costsV,, whereas in &, 7)
plane the cost iV, . It is instructive to point out the im-
provement of our approach upon the contribution of Beica
etal. [7]: Beicaet al. took it for granted thatV ;=0, yet
our analysis demonstrates that for the general case, the an
choring triplet may be in a more complicated angular posi-
tion with respect to the elementary triple&X,{,2).

Equation(4) builds a simple description of the anisotropic
interfacial energy. Now consider the unidirectional planar
anchoring case. Assuming=X, we know thaté and 7 are
two unit vectors in the/-z plane. If we postulate further the
y«+ —Yy symmetry of the anchoring surface, which leads to
¥,=0, Eqg.(4) can be simplified to

gs=Wa(fi-§)%+Wy(1i-2)2. ©)

W, and W, refer to the azimuthal and polar anchoring FIG. 2. (Color) A cut-away view of the energy-direction graph
strengths, respectively. Nevertheless, if the surface is asynfier a planar anchoring surfac®8C depicted by Eq(5), with W,
metric about they« —y reflection due to oblique SiO =1 andW,=3 (in arbitrary unitg. The length of the radius vector
evaporatiorf 15] or asymmetric periodic surface gratifitg], from O to any point at the curved surface represents the interfacial
a nonzero¥, may exist in coarse-grained treatméfur in-  energygs in that direction.

stance, in Ref[16], for the homogeneous alignment cases,

W, just corresponds to the prejilt general case it may be more complicated geometrically,
Another case worth mentioning is the homeotropic sursince only second-order terms are included here.
face with in-plane anisotropy, used in the VCT effg&tand Now we apply this interfacial energy to some specific
homeotropic to twisted planar transitiphO]. Applying Eq.  cases to demonstrate its consequences. First, we consider a
(4) to this case we get chiral NLC slab located between two identical plarzes0
andz=l1, yielding unidirectional planar anchorage with their
5= Wi (- %)%+ W (A-§)2. (6)  easy axes in the directions ¢f=0 and¢= ¢, , respectively.

The free energy of the slab is expressed i

HereW, andW, are the zenithal anchoring strengths corre-

sponding to the deformations in tlxez andy-z planes, re-

spectively. Their differenceW,—W,, is the azimuthal en- F=J gbdv+j g§d5_+f gods’, (7)
ergy breaking, and for the grooved surface it just corresponds

to the Berreman effective anchoradé&’]. To build an intui-

tive impression, in Fig. 2 we show the energy-directionwhereg, are the adaptations of E(p) to the substrate sur-
graph of a planar-anchoring surface defined by(By.Inthe  faces, andy, is the bulk energy density
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gbzi[kll(v'n) +Koo(i- VX A+ 27/po)

+k33[ﬁx(Vxﬁ)]2]—A2—X(ﬁ~ﬁ)2. (8)

Herek,, ks, andkgs are elastic constantp, and Ay are

respectively the pitch and the anisotropic part of the diamag-

netic susceptibility of the chiral NLC an is the magnetic
field in theZ direction.
Our aim is to attain the Feglericksz threshold field

and the saturation fieldls. We performed a variational cal-
culation to build the equilibrium equations, and solved them
under certain limiting conditions. Here we just briefly show

the results. We defina = mky1/(2IW,), y=W,/W,, u’
=Hg/H,, and u"=Hg/H., where H,=m(ky1/Ax)YI
is the threshold field for an untwisted nematic slaly=0)

with rigid boundary coupling. The reduced threshold field is

given by

(2kgo—ksg) A $?
772k11

41k A Y2

mPoK11

u'=|x°-

©)

where A ¢p=¢,—2¢°, ¢, and X are solutions to Eqg10)
and(11),

2@l wyky

20— —= sin 2¢°, 10

b 200 = o sin2¢ (10

(1— 1y sir? ¢O)/n =X tan(7X/2). (11)

And the reduced saturation field is given by
k33 ( 2”(22) 2} ] 1/2
u'=1{—Y2+ , 12
[kll PoKa3 12

in which Y is defined by
k33 a
1- k—ll)\YtanI‘(EY”

kypl—vy T . ¢y mlky
x[l—k—ss—)\Y tan)'(EY”—smz(?— Dokaa)

13

1 T
;cosﬁ(EY)

In Fig. 3(@), the X and v dependences of the threshold and
saturation fields are shown for a 90° twisted NLC layer, with

the same material parameters as those used in Fgfand

[6]. Besides the curves af— o andy=1, which repeat the

previous results by Becket al.[5] and Sugimuraet al. [6],
we additionally plot the curves foy= 75, which simulate

the realistic case that the azimuthal anchoring is one or two

orders weaker than the polar coupling, apg 0 as a limit

case, corresponding to the degenerate planar anchorage.

Second, we study the VCT effect. In R€8], the authors
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FIG. 3. (a) A and y dependences of the reduced threshaib) (
and saturationy”) fields of a 90° twisted NLC slalib) The VCT
effect. As the voltage increases from OMg to Vg, the system goes
from Ato Tto S. The inset shows the voltage dependencé®adind
¢°. The parameters used atg;=16.7 pN, ky,=8.0 pN, ks3
=18.1 pN, pp=0, Ae=—4.2, W,=27.9<10 ®J/n?, W,=15.8
X108 J/n?, andl=4.7 um.

netic action in Eq.(8) is replaced by the electric energy

1|A€|eg(ri- E)2 HereAe ande, are the dielectric anisotropy
and the permittivity of free space. For simplicity, we made
an approximation to replace the local figtdvith an average

field E=V/I, with V being the voltagéthis approximation is
proper if|Ae|<e€, , and is sufficient at present to predict the
VCT effect, since the key point is the interfacial energy of
the grating surfade

A series of derivations vyield the following equations
which define the voltage dependence of the director
ro(6° ¢°) at the grating surface,

C1=—(Wy—W,)cos ¢°sin 2¢°, (14)
C,=(Wy cos ¢%+W, sir? ¢°)? sin? 26 f
+C2/h(6°) — | A €| eoE? sir? 6°, (15)
|:f”0[f(9)/N(o)]1’2de, (16)
0
6’0
¢°=—f0 C.[f(0)IN(6)]¥h()de. 17

analyzed the VCT effect using the finite-element method.
Berreman’s seminal workl7] indicated that the profile ef- B . _
fect may be equivalent to an anisotropic surface energ;}."le(re ,;2(0)_%1‘:032 O+kassin’ 6, h()=cos’ fkzzcoS ¢
Along this route, we use Ed6) to simulate the anchoring ks3SI 6), an

effect of the grating surface. The opposite substrate builds a

rigid planar boundary conditiot@™ =0, ¢ =0). The mag- N(8) = C,+|A €| €oE? sir? §— C3/h(6). (18
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Noting that the director begins to twist #,=2.3V, and  system goes from\ to T to Sin the ¢°— #° diagram, exhib-
saturates a¥s=6.0V in Fig. 3a) in [9], and using the pa- iting a typical continuous transition. A meaningful implica-
rameters enumerated there, we can evaluateWjat27.9  tion of this equivalent treatment is that the homeotropic sub-
%1076 J/n? and W, =15.8< 10~8 J/m?, which are reason- Strate use_d ina VC_T cell may be prepared by othe( methods
able values for homeotroic alignment. The in-plane anisotian grating[10], since the essential point is the in-plane

ropy W,—W, seems small compared with the Berremanan'SOtrOpy'

luati t this i i : bl . - In summary, we have built a two-constant formula as a
evaluation, yet this is not a serious problem since FEB#i  oneralization of the RP model. Some significant cases have

o(f)fered aoreasonable explana(t)ion.OThen by computation thgeen discussed. Our analysis on the twisted NLC device and
0=V, ¢°—V curves and the)"— 6~ diagram are drawn in  the VCT effect shows that this energy is useful in depicting
Fig. 3(b). As the voltage increases from 0 ¥4 to Vg, the  anisotropic interfacial phenomena.
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