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Analysis of weak-anchoring effect in nematic liquid crystals
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A generalized Rapini-Papoular-type anchoring energy formula@J. Phys.~Paris! Colloq. 30, C4-54 ~1969!#
with two coupling constants is established through a second-order spherical-harmonic expansion. Using this
formula, we analyze the threshold and saturation properties of twisted nematic devices with unidirectional
planar anchorage, assuming that the azimuthal and polar anchoring strengths are both finite and distinct from
each other. We also discuss the voltage-controlled-twist effect@G. P. Bryan-Brownet al., Nature~London!
392, 365 ~1998!#. It is shown that the predicted behavior is consistent with the experimental observations.

PACS number~s!: 61.30.Cz, 61.30.Gd
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In the last several decades the surface anchoring effe
nematic liquid crystals~NLC! was extensively studied@1,2#.
Many techniques have been invented to build appropr
anchoring properties, and many methodologies have bee
tablished to measure the energies relevant to interfacial
chorage. Unfortunately, the theoretical recognition may
be satisfactory. In the early stage, strong anchoring was u
to depict the NLC-substrate interfaces, which assumes
the director at the surface is fixed at the easy direction. H
ever, in most cases the surface coupling is not so strong,
hence the concept of weak anchoring has been introdu
Rapini and Papoular~RP! built a simple phenomenologica
expression for the interfacial energy of homeotropic anch
ing per unit area@3#: gs5A sin2 F0, whereF0 is the polar
angle of the director at the surface, and the constantA is
termed anchoring strength or anchoring energy. After th
many attempts had been made to generalize the RP ener
order to describe the planar and tilt anchoring@4–7#. Until
now the situation has been quite perplexing. Beckeret al.
considered a surface with weak polar and strong azimu
anchoring @5#. Sugimuraet al. used an interfacial energ
with a single coupling constant@6#, but their argument is
criticized due to the incapability of distinguishing betwe
azimuthal and polar coupling. Beicaet al. @7# significantly
improved the RP model, however, their contribution is s
incomplete as a second-order spherical-harmonic model~see
below!; furthermore, their approach fails in applying to th
homeotropic surface with in-plane anisotropy@8#, as with the
substrate used in Refs.@9# and @10#.

In this Rapid Communication, employing a spheric
harmonic expansion, we build a second-order formula of
anisotropic interfacial energy. It is clear that the energ
used in@3–7# are all special cases of this generalized f
mula. To study its consequences, we apply it to a twis
nematic slab sandwiched between two unidirectional pla
anchoring surfaces@11,12#, and to the voltage-controlled
twist ~VCT! effect @9#. For the former, we show that ou
study can approach the common case in which the azimu
and polar anchoring energies are both finite and distinct fr
each other. For the latter, the generalized surface en
properly yields the voltage-dependent twist and satura
behaviors.

As a function of directions,gs has been developed into
series of spherical harmonics with respect to the surface
PRE 621063-651X/2000/62~2!/1481~4!/$15.00
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mal @2#. To make it clear, we emphasize here that the equ
lence ofnW and 2nW leads to centrosymmetry ofgs : gs(nW )
5gs(2nW ). This means thatgs is a function defined on the
whole solid angle, although the liquid crystal exists only
one side of the interface. A consequence of the centros
metry is that any odd-order term disappears spontaneous
a series expansion ofgs .

With a single easy directioneW (u0 ,f0) ~Fig. 1!, gs be-
comes such a function: it is centrosymmetric, and it has t
minima in eW and 2eW . Now we expandgs into a series of
spherical harmonics with respect to theeasy axiseW . The
second-order result is@13#

gs~Q,F!5(
l 50

2

(
m52 l

l

glmYlm~Q,F!, gl 2m5glm* . ~1!

Here Q and F are the polar and azimuthal angles with r
spect toeW . In Eq. ~1!, g00 is the isotropic part and can b
neglected. Thel 51 terms disappear due to the breaking
centrosymmetry. SinceY20(Q,F)5(3 cos2 Q21)/2, we
know that the g20 term just corresponds to the single
constant energy@6#

cos2 Q5~nW •eW !2. ~2!

We haveg2150, since a nonzerog21 would break the defi-
nition that the easy directioneW (Q50) is the energy mini-
mum @14#. This is a significant simplification. Ifg225g22,R
1 ig22,I , theg22 terms become

FIG. 1. Schematic of anisotropic surface anchoring. Heref0

50, andF ~not marked! is the angle between planeseOx8 and
eOn.
R1481 ©2000 The American Physical Society
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g22Y22~Q,F!1c.c.54ug22usin2 Q cos2~F2C0!

22ug22usin2 Q, ~3!

whereC052arctan(g22,I /g22,R)/2. In Eq.~3! some constan
factors are neglected in the definition of spherical harmon
Merging the second term on the right-hand side of Eq.~3!
with Eq. ~2!, we get the second-order form of the anchori
energy

gs~Q,F!5Wj sin2 Q cos2~F2C0!

1Wh sin2 Q sin2~F2C0!

5Wj~nW •jW !21Wh~nW •hW !2, ~4!

where some constants are discarded. (jW ,hW ,eW ) is an orthonor-
mal vector triplet ~Fig. 1!, with Euler angles (f0 ,p/2
2u0 ,C0) rotating from the elementary triplet (x̂,ŷ,ẑ). Here
Wj andWh are both positive, sinceeW is the easy axis. Equa
tion ~4! implies the presence of surface-induced nematic
axiality, in that the deviation of directornW away from the
easy axiseW in the (eW ,jW ) plane costsWj , whereas in (eW ,hW )
plane the cost isWh . It is instructive to point out the im-
provement of our approach upon the contribution of Be
et al. @7#: Beica et al. took it for granted thatC050, yet
our analysis demonstrates that for the general case, the
choring triplet may be in a more complicated angular po
tion with respect to the elementary triplet (x̂,ŷ,ẑ).

Equation~4! builds a simple description of the anisotrop
interfacial energy. Now consider the unidirectional plan
anchoring case. AssumingeW5 x̂, we know thatjW andhW are
two unit vectors in they-z plane. If we postulate further th
y↔2y symmetry of the anchoring surface, which leads
C050, Eq. ~4! can be simplified to

gs5Wa~nW • ŷ!21Wp~nW • ẑ!2. ~5!

Wa and Wp refer to the azimuthal and polar anchorin
strengths, respectively. Nevertheless, if the surface is as
metric about they↔2y reflection due to oblique SiO
evaporation@15# or asymmetric periodic surface grating@16#,
a nonzeroC0 may exist in coarse-grained treatment~for in-
stance, in Ref.@16#, for the homogeneous alignment cas
C0 just corresponds to the pretilt!.

Another case worth mentioning is the homeotropic s
face with in-plane anisotropy, used in the VCT effect@9# and
homeotropic to twisted planar transition@10#. Applying Eq.
~4! to this case we get

gs5Wx~nW • x̂!21Wy~nW • ŷ!2. ~6!

HereWx andWy are the zenithal anchoring strengths cor
sponding to the deformations in thex-z andy-z planes, re-
spectively. Their difference,Wx2Wy , is the azimuthal en-
ergy breaking, and for the grooved surface it just correspo
to the Berreman effective anchorage@17#. To build an intui-
tive impression, in Fig. 2 we show the energy-directi
graph of a planar-anchoring surface defined by Eq.~5!. In the
s.
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general case it may be more complicated geometrica
since only second-order terms are included here.

Now we apply this interfacial energy to some speci
cases to demonstrate its consequences. First, we consi
chiral NLC slab located between two identical planesz50
andz5 l , yielding unidirectional planar anchorage with the
easy axes in the directions off50 andf5f t , respectively.
The free energy of the slab is expressed as@18#

F5E gbdv1E gs
2ds21E gs

1ds1, ~7!

wheregs
6 are the adaptations of Eq.~5! to the substrate sur

faces, andgb is the bulk energy density

FIG. 2. ~Color! A cut-away view of the energy-direction grap
for a planar anchoring surfaceABC depicted by Eq.~5!, with Wa

51 andWp53 ~in arbitrary units!. The length of the radius vecto
from O to any point at the curved surface represents the interfa
energygs in that direction.
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gb5
1

2
@k11~¹•nW !21k22~nW •¹3nW 12p/p0!2

1k33@nW 3~¹3nW !#2#2
Dx

2
~nW •HW !2. ~8!

Herek11, k22, andk33 are elastic constants,p0 andDx are
respectively the pitch and the anisotropic part of the diam
netic susceptibility of the chiral NLC andH is the magnetic
field in the ẑ direction.

Our aim is to attain the Fre´edericksz threshold fieldHF
and the saturation fieldHS . We performed a variational cal
culation to build the equilibrium equations, and solved th
under certain limiting conditions. Here we just briefly sho
the results. We definel5pk11/(2lWp), g5Wa /Wp , u8
5HF /Hc , and u95HS /Hc , where Hc5p(k11/Dx)1/2/ l
is the threshold field for an untwisted nematic slab (f t50)
with rigid boundary coupling. The reduced threshold field
given by

u85FX22
~2k222k33!Df2

p2k11
1

4lk22Df

pp0k11
G1/2

, ~9!

whereDf5f t22f0, f0 and X are solutions to Eqs.~10!
and ~11!,

f t22f02
2p l

p0
5

pgk11

2lk22
sin 2f0, ~10!

~12g sin2 f0!/l5X tan~pX/2!. ~11!

And the reduced saturation field is given by

u95H k33

k11
FY21S 2lk22

p0k33
D 2G J 1/2

, ~12!

in which Y is defined by

1

g
cosh2S p

2
YD F12

k33

k11
lY tanhS p

2
YD G

3F12
k11

k33

12g

lY
tanhS p

2
YD G5sin2S f t

2
2

p lk22

p0k33
D .

~13!

In Fig. 3~a!, the l and g dependences of the threshold a
saturation fields are shown for a 90° twisted NLC layer, w
the same material parameters as those used in Refs.@5# and
@6#. Besides the curves ofg→` andg51, which repeat the
previous results by Beckeret al. @5# and Sugimuraet al. @6#,
we additionally plot the curves forg5 1

10 , which simulate
the realistic case that the azimuthal anchoring is one or
orders weaker than the polar coupling, andg50 as a limit
case, corresponding to the degenerate planar anchorage

Second, we study the VCT effect. In Ref.@9#, the authors
analyzed the VCT effect using the finite-element meth
Berreman’s seminal work@17# indicated that the profile ef
fect may be equivalent to an anisotropic surface ene
Along this route, we use Eq.~6! to simulate the anchoring
effect of the grating surface. The opposite substrate build
rigid planar boundary condition~u150, f150!. The mag-
-

o

.

y.

a

netic action in Eq.~8! is replaced by the electric energ
1
2 uDeue0(nW •EW )2. HereDe ande0 are the dielectric anisotropy
and the permittivity of free space. For simplicity, we ma
an approximation to replace the local fieldE with an average
field Ē5V/ l , with V being the voltage~this approximation is
proper if uDeu!e' , and is sufficient at present to predict th
VCT effect, since the key point is the interfacial energy
the grating surface!.

A series of derivations yield the following equation
which define the voltage dependence of the direc
nW 0(u0,f0) at the grating surface,

C152~Wx2Wy!cos2 u0 sin 2f0, ~14!

C25~Wx cos2 f01Wy sin2 f0!2 sin2 2u0/ f

1C1
2/h~u0!2uDeue0Ē2 sin2 u0, ~15!

l 5E
0

u0

@ f ~u!/N~u!#1/2du, ~16!

f052E
0

u0

C1@ f ~u!/N~u!#1/2/h~u!du. ~17!

Here f (u)5k11cos2 u1k33sin2 u, h(u)5cos2 u(k22cos2 u
1k33sin2 u), and

N~u!5C21uDeue0Ē2 sin2 u2C1
2/h~u!. ~18!

FIG. 3. ~a! l andg dependences of the reduced threshold (u8)
and saturation (u9) fields of a 90° twisted NLC slab.~b! The VCT
effect. As the voltage increases from 0 toVT to VS , the system goes
from A to T to S. The inset shows the voltage dependence ofu0 and
f0. The parameters used arek11516.7 pN, k2258.0 pN, k33

518.1 pN, p05`, De524.2, Wx527.931026 J/m2, Wy515.8
31026 J/m2, and l 54.7mm.
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Noting that the director begins to twist atVT52.3 V, and
saturates atVS56.0 V in Fig. 3~a! in @9#, and using the pa-
rameters enumerated there, we can evaluate thatWx527.9
31026 J/m2 and Wy515.831026 J/m2, which are reason-
able values for homeotroic alignment. The in-plane anis
ropy Wx2Wy seems small compared with the Berrem
evaluation, yet this is not a serious problem since Faetti@19#
offered a reasonable explanation. Then by computation
u02V, f02V curves and thef02u0 diagram are drawn in
Fig. 3~b!. As the voltage increases from 0 toVT to VS , the
o

i,
t-

e

system goes fromA to T to S in thef02u0 diagram, exhib-
iting a typical continuous transition. A meaningful implica
tion of this equivalent treatment is that the homeotropic s
strate used in a VCT cell may be prepared by other meth
than grating@10#, since the essential point is the in-plan
anisotropy.

In summary, we have built a two-constant formula as
generalization of the RP model. Some significant cases h
been discussed. Our analysis on the twisted NLC device
the VCT effect shows that this energy is useful in depicti
anisotropic interfacial phenomena.
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